Information Theory and Coding Techniques

Qualify Examination

1. Let X be a discrete random variable and g(x) is a function of x. Please show that \(H(g(x)) \leq H(x) \)

2. A function \(\rho(x,y) \) is a metric if for all \(x,y \) the following properties hold.
 (i) \(\rho(x, y) \geq 0 \), (ii) \(\rho(x, y) = \rho(y, x) \), (iii) \(\rho(x, y) = 0 \) iff \(x = y \), and
 (iv) \(\rho(x, y) + \rho(y, z) \geq \rho(x, z) \). Please show that
 (a) \(\rho(X, Y) = H(X|Y) + H(Y|X) \) is a metric if \(X=Y \) (or there is a one-to-one function mapping from X to Y)
 (b) Verify that
 \[
 \rho(X, Y) = H(X) + H(Y) - 2I(X;Y)
 = H(X, Y) - I(X;Y)
 = 2H(X, Y) - H(X) - H(Y)
 \]

3. Let \(p(x,y) \) be given by
 \[
 \begin{array}{c|cc}
 X & 0 & 1 \\
 \hline
 Y & 1 & 1 \\
 & 3 & 3 \\
 & 0 & 1 \\
 & 3 & 3 \\
 \end{array}
 \]
 Please find
 (a) \(H(X), H(Y) \)
 (b) \(H(X|Y), H(Y|X) \)
 (c) \(H(X, Y) \)
 (d) \(I(X;Y) \)

4. Let the random variable \(X \) have three possible outcomes \(\{a, b, c\} \). Consider two distributions on \(X \):

 - | symbo | p(x) | q(x) |
 - | a | \(\frac{1}{2} \) | \(\frac{1}{3} \)
 - | b | \(\frac{1}{2} \) | \(\frac{1}{3} \)
 - | c | \(\frac{1}{2} \) | \(\frac{1}{3} \)
 Please find
 (a) \(H(p), H(q) \)
 (b) \(D(p||q) \)
 (c) \(D(q||p) \)

5. For the source \(X = \{ x_1, x_2, x_3, x_4, x_5, x_6 \} \)
 \[
 \begin{pmatrix}
 0.25, & 0.25, & 0.2, & 0.1, & 0.1, & 0.1
 \end{pmatrix}
 \]
 Please construct an optimal Tenary Huffman code for \(X \) and find the corresponding average codeword length.
6. Which of the following codes are
 (a) Uniquely decodable?
 \[C_1 = \{00, 01, 0\} \]
 (b) Instantaneous decodable?
 \[C_2 = \{00, 01, 100, 101, 11\} \]
 \[C_3 = \{0, 10, 110, 1110, \ldots\} \]
 \[C_4 = \{0, 00, 000, 0000\} \]

7. Calculate the capacity of the following channels with probability transition matrices:
 (a) \(X = Y = \{0, 1, 2\} \quad P(y|x) = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix} \)
 (b) \(X = Y = \{0, 1, 2\} \quad P(y|x) = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix} \)
 (c) \(X = Y = \{0, 1, 2, 3\} \quad P(y|x) = \begin{bmatrix} P & 1-P & 0 & 0 \\ 1-P & P & 0 & 0 \\ 0 & 0 & q & 1-q \\ 0 & 0 & 1-q & q \end{bmatrix} \)

8. Find an optimal set of binary codeword lengths \(l_1, l_2, \ldots \) (minimizing \(\sum P l_i \)) for and instantaneous code for each of the following probability mass functions:
 (a) \(P = \left(\frac{10}{41}, \frac{9}{41}, \frac{8}{41}, \frac{7}{41}\right) \)
 (b) \(P = \left(\frac{9}{10}, \left(\frac{9}{10}\right)^2, \left(\frac{9}{10}\right)^3, \ldots\right) \)